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1 Introduction

In this chapter, we briefly review the burgeoning field of ecological niche modeling
and explore its relevance to studies of primate ecology, evolution, and conserva-
tion. Recent years have witnessed an explosion of interest in ecological niche models,
spurred on by the increasing availability of occurrence data and spatially explicit
environmental data as well as GIS tools and technologies appropriate for processing
the increasingly high-resolution and multidimensional data typical of this field.

Ecological niche models (ENMs), sometimes known as species distribution mod-
els (SDMs), relate observed points of occurrence to spatially explicit environmental
variables thought to be relevant in shaping the ecological tolerances of a given taxon
or population (Franklin, 2009; Peterson et al., 2011). ENMs are often used to predict
species distributions—such as in biogeography, conservation management (including
climate change assessment), or pathogen modeling—or they can focus on the models
themselves as representations of species ecological niches. When strong associations
are found between occurrences and environmental predictors, ENMs can lend im-
portant insights into the ecological tolerances or habitat preferences of species or
populations.

While newcomers can surely appreciate the exciting applications made possible by
ENMs, the deluge of alternative methods and implementations can be overwhelming.
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Some of these methods emphasize distinct theoretical issues concerning the nature
of ecological niches. Others emphasize statistical or computational issues. In light
of the abundance of considerations, many newcomers simply run the most available
software, usually without modifying default settings. In doing so, they may overlook
more suitable methods or fail to correct for biases or other shortcomings in their
datasets.

In this chapter, we review previous applications of ENMs in primate studies and
highlight areas of primatology for which ENMs can lend valuable insights. We also
review some of the factors to consider when selecting and running models, and at-
tempt to illustrate this with a brief case study. Our goal is to minimize the difficulties
that many encounter while learning to develop, employ, and interpret ENMs and to
encourage others to explore this promising tool for applications in primatology.

2 Ecological Niche Models in Primatology

Despite recent expansion of ENM approaches and their relevance to our understand-
ing of primate ecology, evolution, and conservation, applications to primate popu-
lations are still relatively rare in comparison to other taxonomic groups. Here we
briefly review some of the ways in which ENMs are being used in studies of primate
populations.

2.1 Habitat suitability models

The most common application of ENMs to studies of primate populations has been
through the approach of habitat suitability modeling (reviewed in Rode et al., 2013),
which focuses on likelihood of occurrence rather than the fitness of species (Hirzel
& Le Lay, 2008). The outputs of habitat suitability models are often incorporated
into gap analyses—a method for identifying spatial “gaps” in existing protected
area management plans by determining whether particular environments are poorly
represented in existing areas (Scott et al., 1987)—that can be used for for species-,
site-, country-, or regional-level conservation planning (Morales-Jimenez et al., 2005;
Rode et al., 2013). Also, for rare and elusive species for which complete distribution
data are unavailable, habitat suitability models can be useful for directing future
survey efforts (Rode et al., 2013).

In addition to gap analyses, studies have inferred suitable habitat for regional
and site-level conservation planning (Peck et al., 2011; Vidal-Garca & Serio-Silva,
2011; Junker et al., 2012; Campos & Jack, 2013; Hickey et al., 2013; Pintea et
al., 2014). Coudrat & Nekaris (2013), for instance, used Maxent to model suitable
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habitat for four macaque species (Macaca arctoides, M. assamensis, M. leonina,
M. mulatta) in Nakai-Nam Theun National Protected Area, central-eastern Laos
and found important differences in characteristics of suitable habitats across species,
with implications for conservation management. Hickey et al. (2013) used biotic and
abiotic data (including fragmentation) associated with bonobo (Pan paniscus) nests
to predict suitable conditions across the species’ range.

For rare and elusive species, ENMs can be used to help locate areas that might
provide suitable habitat for a species but have not yet been surveyed. Boubli & Lima
(2009), for example, modeled the suitable habitat of brown-backed bearded sakis
(Chiropotes israelita) and black uakaris (Cacajao melanocephalus, C. hosomi, and C.
ayresi) in remote regions of western Amazonas, Brazil using Maxent to guide future
survey expeditions into these remote areas. Also, Thorn et al. (2009) and Voskamp et
al. (2014) modeled suitable habitat in Maxent for Asian slow lorises in Borneo, Java,
and Sumatra, and compared the model to protected area and land-use information
to define areas that should be high priority survey sites, sites for reintroduction, or
sites for possible protected area extensions. Similar approaches may be useful for
identifying priority areas for archaeological or paleontological surveys by predicting
site distributions using ENMs (Beeton et al., 2013), which can help complement
other GIS approaches (e.g., Conroy et al., 2012).

2.2 Modeling the potential effects of future climate change

Although threats such as hunting and habitat disturbance may be more immedi-
ate concerns for primate population persistence as compared to stressors related to
climate change, assessing likely future exposure to climate change across a species’
range can nevertheless play an important role in conservation prioritization and plan-
ning for the long-term survival of species (Blair et al., 2012). Models and empirical
analyses of range shifts in other taxonomic groups suggest that species show indi-
vidualistic responses to changing climates (Peterson et al., 2011). Future climate
projection data from the Intergovernmental Panel on Climate Change (IPCC) are
available for at least three emissions scenarios (A1, A2, B2), seven general circula-
tion models (GCMs), and seven time periods (http://www.ccafs-climate.org/).
ENMs can be calibrated in the current climate and then projected into the future
using IPCC scenarios to identify the parts of a species’ range that are expected to
be most exposed to changes in temperature and precipitation.

A growing number of studies project primate ENMs into the future using IPCC
scenarios. Most studies focus on projecting shifts in climatically suitable areas for
a species or group of species, allowing an estimation of potential future habitat loss
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as well as refuge areas that might be prioritized in conservation efforts. Examples
include studies of Francois’ langurs and Tonkin snub-nosed monkeys (Vu et al., 2010,
2011), Sichuan snub-nosed monkeys (Luo et al., 2014), lion tamarins (Meyer et al.,
2014), and Bornean orang-utans (Struebig et al., 2015). Another application to pri-
mate populations is the use of ENMs to project climatic suitability for vegetation
species providing key habitat, rather than to project climatic suitability for the in-
dividual species themselves. Wong et al. (2013), for example, used Maxent to model
and project the distribution of key vegetation types of importance to the Yunnan
snub-nosed monkey under IPCC scenarios to infer and plan for the potential effects
of climate change on this species. Common criticism of these applications of ENMs
include failure to capture uncertainty across model algorithms and scenarios and a
limited ability for validation of future projections. One approach to improve valida-
tion is to use a two-step modelling process, forecasting from the recent historical past
(when such data are available) and validating the forecast with present occurrence
data, then forecasting to the future; Chatterjee et al. (2012) modeled gibbon distri-
butions in China across three time intervals using fossil and historical data, current
data, and IPCC scenarios, providing additional validation for their projections across
time. Further, ensemble forecasting has been presented as a method that better cap-
tures the uncertainty of modeling into the future by calibrating ensembles, or sets of
ENMs, using various algorithms projected to a suite of future climate scenarios and
exploring the resulting range of uncertainties (Arajo & New, 2007). This approach
has been theoretically and empirically shown to outperform forecasts by individual
models in predictive ability. Brown & Yoder (2015) modeled ENMs for 57 lemur
species under future climate scenarios using an ensemble approach. They found that
60% the lemur species modeled will experience considerable range reductions entirely
due to future climate change. When taking into account the uncertainties, climate
change projections can be useful to determine general trends in terms of areas and
species likely to be the most affected by habitat loss due to climate change. In
order to most accurately estimate local extinction risks due to climate change, how-
ever, it may be important to couple ENMs with models of dispersal, demography, or
interactions among species (Peterson et al., 2011; Sterling et al., 2013).

2.3 Biogeography, niche evolution, and ecological speciation

ENMs can provide considerable insight into the biogeographic history of organisms
including species’ environmental requirements, potential barriers that limit dispersal,
and the degree to which ecological niches change over evolutionary timescales (Wiens,
2004; Raxworthy et al., 2007; MacColl, 2011; Bett et al., 2012; Blair et al., 2013b).
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Bett et al. (2012) constructed ENMs for grey-, red-, and black-shanked doucs
(Pygathrix cinerea, P. nemaeus, and P. nigripes) to investigate the north-to-south
distribution turnover common across several primate groups in Vietnam, Laos, and
Cambodia. The ENMs successfully predicted the north-to-south gradient based only
on climatic variables, and the authors used the differences between the most impor-
tant variables in each model to discuss whether a zoogeographic barrier or current
or historical climatic shifts are most likely to explain the biogeographic history of
this group. A similar approach was applied to explain the parapatric distribution
of brown and black-and-gold howler monkeys (Holzmann et al., 2015). Paleoclimate
layers are increasingly available and may further inform questions of primate biogeo-
graphic histories by facilitating the modeling of past species distributions, calibrated
with fossil data.

Blair et al. (2013b) produced ENMs for eight species of Eulemur to test for
ecological niche conservatism or divergence between sister species pairs, defined as
species that are the only descendants of a common ancestral species. Ecological niche
divergence refers to the tendency for related species to differ more ecologically than
expected by random drift (or simple Brownian motion descent with modification
(Losos, 2008), while ecological niche conservatism refers to the tendency for related
species to differ less ecologically than expected by random drift. Blair and colleagues
tested for ecological niche divergence or conservatism using the null model developed
by Warren et al. (2008), in which observed ENM overlap was compared to a null
distribution of overlap values generated from random points within the geographic
range of the species pair. For three sister-pair comparisons, the tests supported the
null model that niches are no more divergent than the available background region.
Combined with the presence of a riverine barrier between these pairs, the null results
are consistent with an allopatric speciation model. For the sister pair E. flavifrons-E.
macaco, however, Blair and colleagues found support for significant niche divergence
(Figure 1). Consistent with their parapatric distribution on an ecotone and the lack of
obvious geographic barriers, these findings support a parapatric model of speciation
and support overall the idea that multiple speciation processes are at work among
these closely related lemurs.

ENMs can also be used to predict the geography of hybrid zones. Indeed, the
overlap between the above ENMs (Blair et al., 2013b) coincides with known hybrid
zones between Eulemur species, including the known hybrid zone between E. macaco
and E. flavifrons (Figure 1). Innovative work is being done in other taxa to predict
hybrid zones and other species interactions in recognition of the fact that biotic in-
teractions may be as prominent as climate in determining species distributions. A
recent study, for instance, attempted to disentangle the roles of biotic interactions
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Figure 1: ENMs, occurrence records, and histograms showing the results of the null distri-
bution test with 100 replicates for Eulemur flavifrons-Eulemur macaco. The black arrow
on the histograms shows where the actual overlap between the two ENMs falls compared
to the null distribution of pseudo-replicated niche overlap values. Adapted from Blair et
al. (2013b).
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and climate in determining the location of a moving hybrid zone between the breeding
ranges of two parapatric passerines in Europe, and found that interspecific interac-
tions, not climate, accounted for the present location of the contact zone (Engler et
al., 2013).

Researchers have also used ENMs to identify cryptic species lineages for which
processes of morphological differentiation, lineage sorting, and the formation of re-
productive barriers may be incomplete but ecological attributes have differentiated.
This approach has been most commonly applied to reptiles, amphibians, or birds
(e.g., Raxworthy et al., 2007), but has also been applied to primate populations.
Kumara et al. (2009), for example, mapped the distribution of various subspecies
of slender lorises in peninsular India using ENMs. Their results indicated the pres-
ence of a previously undescribed, geographically disjunct, and ecologically unique
subspecies occupying a distinct and intermediate climate region running along the
eastern fringe of the southern Western Ghats. The study also described morpho-
logical differences, and recommended an urgent need for detailed exploration and
conservation action. Other recent studies have documented how both environmental
variation and rivers shape patterns of genetic differentiation between chimpanzee
subspecies (Mitchell et al., 2015; Sesink Clee et al., 2015).

3 Which Ecological Niche Model?

Selecting and implementing a particular type of ENM for any given research ques-
tion can be an intimidating task requiring rumination over issues such as sample size,
sample bias, spatial scale, environmental correlations, model complexity, desired sta-
tistical metrics, and accessibility of algorithms and software. The process of model
selection can be particularly agonizing due to the abundance of methods to choose
from (Table 1 and Figure 2) and the knowledge that discrepancies among model
performances can sometimes be very large, particularly for the projection of species
distributions into independent or unknown circumstances (Thuiller, 2003; Pearson
et al., 2006; Peterson et al., 2007). Our goal in this section is not to cover all of these
methods, but rather to highlight how they differ and to indicate important issues to
consider when choosing among them. We hope that this review will encourage read-
ers to explore available methods, justify their choices, and to apply them effectively.
Because our focus is on the practical implementation of ENMs, we use the terms
“methods” and “models” broadly to refer to modeling approaches that have been
published and are generally available as software. This encompasses not only their
algorithms but also the factors that influence other key elements of the modeling
process such as characteristics of occurrence data, choice of environmental variables,
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selection of decision thresholds, and prevention of overfitting.
The majority of studies discussed in this chapter thus far have used correlative

ENMs, which use associations between species occurrence records and environmental
variables to characterize the environments within which species can exist or are likely
to exist. The advantages and disadvantages of these correlative ENMs as compared
to mechanistic or process-based ENMs (Kearney & Porter, 2009) have been widely
discussed in the literature (e.g., Pearson & Dawson, 2003; Dawson et al., 2011).
Criticisms of correlative ENMs have commonly focused on their inability to yield
information about the underlying mechanisms that limit species distributions. An
important advantage of correlative ENMs, however, is that detailed knowledge of
the functional traits of organisms is not required. Correlative methods therefore
have the potential to be applied rapidly to a large number of species, as well as to
rare or poorly understood species including many primates. Lehmann et al. (2010)
used a mechanistic (time budget) model to link climate variables to the behavior
and biogeography of great apes, for which detailed information is available. Another
recent study, however, compared a mechanistic time-budget model to a correlative
Maxent model for vervets and reported that the two approaches produced remarkably
similar predictions for vervet distribution despite the conceptual and methodological
differences between these two modeling approaches (Willems & Hill, 2009). The
remainder of this chapter focuses on correlative approaches, which we anticipate to
be more readily applicable to primate datasets in the near term.

3.1 Accessibility

One of the most important considerations for selecting ENMs is more practical than
methodological. While many methods have been published, not all are equally ac-
cessible. Some software implementations are not made available. Others may be
disseminated as software extensions or libraries, or as standalone programs, but nev-
ertheless remain inaccessible due to cost (e.g., software is proprietary), system re-
quirements (e.g., software is platform-specific), or difficulty of use. For some projects,
certain methods may be undesirable due to the computational time involved.

The most accessible methods are released as software that is freely available
and cross-platform, with detailed documentation on model algorithms, settings, and
parameters. The inclusion of tutorials or sample datasets can be an effective com-
plement to other documentation (e.g., Phillips, 2009). The availability of a graphical
user interface (GUI) can also increase accessibility by reducing the learning curve for
operating the tool. Maxent and GARP, for instance, both have standalone GUI ver-
sions (Scachetti-Pereira, 2002; Phillips et al., 2006) while ModEco (Guo & Liu, 2010)
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Table 1: Partial list of ecological niche modeling methods

Method Description Statistical
approach

Data1 Software2 References

ANN artificial neural networks machine
learning

PA*/Ab R (nnet), SNNS,
openModeller,
ModEco

Manel et al. 1999
Pearson et al. 2002

BIOCLIM bioclimatic envelope model distance PO R (dismo,
biomod2),
openModeller,
DIVA-GIS,
ModEco

Nix 1986
Busby 1991

BN Bayesian networks machine
learning

PA* ModEco, Elvira Friedman et al. 1997
Aguilera et al. 2010

BRT boosted regression trees machine
learning

PA* R (gbm, dismo) Leathwick et al. 2006b
Elith et al. 2008

BRUTO generalized additive model
with adaptive back-fitting

regression PA*/Ab R (mda) Leathwick et al. 2006a

CART classification and regression
trees (also known as decision
trees)

machine
learning

PA*/Ab R (rpart), Mod-
Eco

De’ath & Fabricius 2000
Rouget et al. 2001

DOMAIN continuous point-to-point
similarity metric (Gower
metric)

distance PO R (dismo), open-
Modeller, DIVA-
GIS, ModEco

Carpenter et al. 1993

ENFA ecological niche factor anal-
ysis

distance PB Biomapper,
openModeller

Hirzel et al. 2002

GAM generalized additive models regression PA*/Ab R (mgcv, gam) Guisan et al. 2002
GARP genetic algorithm for rule

set production
machine
learning

PP openModeller,
DesktopGarp

Stockwell & Peters 1999

GDM generalized dissimilarity
models (including com-
munity and single-species
implementations, see Elith
et al., 2006)

regression PA*/Ab Unreleased Ferrier et al. 2002
Elith et al. 2006

GLM generalized linear models regression PA*/Ab R (stats), Mod-
Eco

Guisan et al. 2002

HABITAT HABITAT envelope proce-
dure

distance PO Unreleased Walker & Cocks 1991

LIVES limiting variable and envi-
ronmental suitability

distance PO Unreleased Li & Hilbert 2008

MARS multivariate adaptive re-
gression splines (including
community and interaction
implementations, see Elith
et al., 2006)

regression PA*/Ab R (mda) Friedman 1991
Moisen & Frescino 2002

MAXENT maximum entropy machine
learning

PB Maxent, R
(dismo via
maxent.jar),
openModeller,
ModEco

Phillips et al. 2006
Phillips & Dudk 2008

MD Mahalanobis distance distance PO R (dismo) Farber & Kadmon 2003
Rotenberry et al. 2006

PPM Point process models regression PO R (spatstat,
ppmlasso),
Maxent

Renner et al. 2015

RF random forests machine
learning

PA* R (randomFor-
est), openMod-
eller

Cutler et al. 2007

RS rough set machine
learning

PA* ModEco Pawlak 1991
Guo & Liu 2010

SVM support vector machines machine
learning

PO
(one-
class
SVM);
PA*/Ab
(rest)

R (e1071, kern-
lab), openMod-
eller, ModEco

Guo et al. 2005
Drake et al. 2006

1 PO = presence-only; PA = presence/absence; PP = presence/pseudo-absence; PB = presence/background; Ab
= abundance data; * note that presence/absence methods can be applied to presence-only datasets through
the generation of pseudo-absences.

2 All software in this list is freely available. For methods implemented in R, relevant packages are listed in
parentheses.
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Figure 2: A comparison of model outputs using nine of the ENM algorithms listed in Table
1. Models were trained using presence points for Saimiri oerstedii citrinellus, shown in red,
that were compiled from several sources. Modeling generally followed procedures described
in Box 1. The values mapped represent the model outputs, but their interpretations depend
on the method used. For envelope methods, they represent distance values. For other
methods, they represent suitability scores, but not necessarily occurrence probabilities.
Green pixels represent higher values, but scales are not shown because values are relative.
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is a relatively recent GUI application employing a wide range of algorithms. Despite
these advantages, however, an active community of users and developers continue
to support non-GUI systems. The most prominent of these systems is R (R Core
Team, 2013), which is both a programming language and a command-line statistical
program. R’s use of the command line can be intimidating for novices, but we find
that the command line provides greater control over analysis and fosters a greater
understanding and appreciation of model settings and parameters. This helps avoid
the blunder common to novice GUI users of hitting “go” without changing or even
checking the default settings.

A growing number of ENM methods are supported in R through packages such
as dismo and biomod2. Many of these methods, especially those included in the
same packages, share many details of their implementation and can therefore be
readily run together with other methods, which is very helpful for comparing or
combining models (Thuiller et al., 2009). When prepared as scripts, analyses can be
generalized and reused such that a series of procedures can be reapplied to evolving
or independent datasets, thereby reducing considerably the time and effort needed to
set up, adjust, and rerun analyses. Because of its power, flexibility, and popularity in
the ENM community, we strongly encourage readers to consider using R for running
ENMs. Hijmans & Elith (2013) and Georges & Thuiller (2013) provide excellent
guidance for getting started.

3.2 Treatment of presence, absence, and abundance

All ENM methods require a priori information on species distributions as part of
their approaches. The methods can be classified according to two criteria: (1)
whether the input data are treated as continuous measures of abundance or as binary
measures of presence/absence and (2) how absence data are provided and interpreted
(particularly for presence/absence methods).

Abundance-based methods require prior data not only on whether species occur,
but also on the number (or relative number) of individuals present. Estimates of rel-
ative abundance are virtually impossible to obtain without intensive sampling and
seldom cover extensive geographic space due to practical considerations. For pri-
mates and other animals, abundance comparisons are further confounded by factors
such as range shifts, group size/structure, activity patterns, and detection ability.
Abundance methods are best-suited for sampling designs for which abundance infor-
mation is recorded and the detection probability can be addressed. For primates and
other animals, these methods may therefore be effectively employed together with
field methods such as camera-trap surveys, capture-recapture sampling, or sight-
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resight of animals with individually identifiable features. Abundance methods are
also well-suited for modeling plant distributions from plot data (Potts & Elith, 2006)
and may therefore have useful applications for assessing primate habitats (see also
Rode et al., 2013).

Presence/absence approaches treat their input data as binary (i.e., species are
either recorded or not recorded) and are therefore more appropriate for occurrence
data lacking information on abundance. An inherent challenge with presence/absence
approaches, however, relates to detection probability and the relative reliability of
presences compared to absences. Notwithstanding any errors in identification or
georeferencing, geographic presences are in general more reliable than absences be-
cause of the possibility that “absent” species are in fact present but undetected (e.g.,
Kry et al., 2010). Several analytical approaches attempt to address this uncertainty
by eliminating the need to provide information on absences. Because most data on
primate distributions are likely to be geographically biased with relatively small sam-
ples, approaches not requiring absence information may be of great utility. While
these approaches are sometimes labeled as “presence-only” methods in the literature,
this label can be misleading when applied to certain methods that nevertheless in-
corporate indirect measures of absence into their models (e.g., “background” points
in Maxent). In our discussion, we reserve the label “presence-only” for methods not
involving any form of absence. Presence-only data, in contrast, refer to data for
which absence and abundance information is not available.

The Mahalanobis distance (Farber & Kadmon, 2003) is one illustrative example
of a true presence-only method. In this method, environmental values across the
study region are positioned in environmental space and a mean vector representing
optimal conditions is computed for presence records only. The covariance of the
presence sample is also used to compute an ellipsoidal distribution surrounding the
data. The suitability of all cells (the Mahalanobis distance) is calculated according
to their proximity to this vector in environmental space, scaled by the width of the
ellipsoid in the test cell’s direction. The Mahalanobis distance thus provides an
intuitive scale-invariant means of comparing an unknown sample to a known sample
while taking into account covariance in the dataset.

Presence/absence approaches, in contrast, incorporate both presence and absence
into their models. These methods include traditional statistical models such as gen-
eralized linear models (GLM) and generalized additive models (GAM), both of which
use linear regression to fit a main presence-absence pattern. When absence data are
not available, presence/absence methods can nevertheless be used with presence-only
datasets by randomly generating “pseudo-absences” in place of true absences. The
pseudo-absences can be randomly derived from the entire study area (i.e., the back-
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ground) or from a subset of it, such as all non-presence cells. The software GARP,
for instance, randomly generates pseudo-absences from the total study area in lieu
of user-defined absences (Stockwell & Peters, 1999). This strategy is similar to pres-
ence/background methods (described below) but differs in that the pseudo-absences
representing the background are still treated as absences in the building of the model.

Presence/background approaches use presence records together with data from
the entire study area without treating any parts of the background as absences.
Maxent, for instance, uses sample points and background samples to generate a
distribution that maximizes the relative entropy between the probability densities
estimated from each (Elith et al., 2011). Ecological niche factor analysis (ENFA),
by contrast, uses factor analysis to compare the distribution of ecological values
associated with presence records to the distribution of values comprising the full
background in multidimensional space (Hirzel et al., 2002). Because the background
distribution is based on the defined study area, presence/background methods can
be considerably affected by the choice of study extent (Anderson & Raza, 2010).

3.3 Model approach, evaluation, and performance

Every ENM method will generate a prediction when properly run. Understanding
how good a model is and how suitable it is for a particular purpose is considerably
more difficult (e.g., Lozier et al., 2009). The manner in which a method is imple-
mented dictates how its results should be interpreted. Choosing a model based on its
statistical or ecological suitability is an important but difficult task that is covered
in more detail elsewhere (Franklin, 2009; Peterson et al., 2011). When comparing
models, however, we find it useful to ask whether models make sense geometrically
(does the shape of the modeled relationships make sense?), ecologically (is the model
sensible given the ecological relationships being modeled?), and spatially (are the
model’s predictions plausible when mapped out in geographic space?).

The simplest ENM approaches use a distance-based “envelope” to define the
boundaries of suitable habitat in multidimensional environmental space. These in-
clude the BIOCLIM model (Nix, 1986; Busby, 1991), which defines the envelope
as the space delimited by the minimum and maximum values for all presences, the
DOMAIN model (Carpenter et al., 1993), which uses a multivariate point-to-point
similarity coefficient known as the Gower metric to assign classification values to sites
based on the proximity of the most similar record in environmental space, and the
Mahalanobis distance (Farber & Kadmon, 2003), which is the standardized difference
between the environmental values for any point and the mean values for the same
variables across all presence points. Distance methods do not estimate a response
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function and cannot tease apart the relative importance of environmental predictors.
They also assume that organisms are found in optimal habitats, are well-sampled
in environmental space, and that their habitat variables are not dynamic. Despite
these assumptions and limitations, distance methods continue to be widely used (e.g.,
Booth et al., 2014).

A number of ENM approaches use statistical methods such as regression to es-
timate fitted response functions in their models. These include generalized linear
models (GLM), generalized additive models (GAM), and multivariate adaptive re-
gression splines (MARS). GLM is an extension of basic linear regression that uses link
functions to fit linear predictors to a flexible range of distributions (e.g., Gaussian,
Poisson, binomial, negative binomial, gamma) in the response variable. Through
transformations of predictor variables, GLM can be made to accommodate nonlin-
ear relationships between predictors and responses. GAM is a nonparametric (or
semi-parametric) extension of GLM that uses smooth functions to fit predictors to
complex, nonlinear, and nonmonotonic responses. MARS is similar to GAM in that
it makes fewer assumptions about the form of the response function. Unlike GAM,
however, MARS fits the response in a stepwise, adaptive manner, resulting in a se-
ries of connected linear segments rather than smooth curves in GAM (Friedman,
1991). Unlike distance approaches, regression models can accommodate categorical
predictors and can address individually the contributions of environmental variables
to habitat suitability due to additivity in the models.

A diverse group of ENM approaches are derived from the field of machine learn-
ing and are hence referred to as machine learning methods. There is considerable
overlap, however, between the fields of machine learning and inferential statistics and
the classification of these ENMs is not without ambiguity (Franklin, 2009). In gen-
eral, machine learning approaches differ in that they learn the mapping function (or
classification rules) inductively from the training data while statistical approaches
estimate parameters from the data but require that distributions be set by the user
(Breiman, 2001). While machine learning models can require a shift in thinking
for researchers accustomed to statistical paradigms, some have well-formed statisti-
cal properties that have been dissected for ecological applications (e.g., Elith et al.,
2008, 2011). Machine learning methods include decision trees, genetic algorithms,
and maximum entropy. We describe these methods below because they are commonly
used and have accessible software implementations.

Decision trees, or classification and regression trees (CART), refer to two related
algorithms and their outputs: classification trees (CT) and regression trees (RT).
Both CT and RT are assembled as recursive binary splits that classify observations
based on threshold values of single predictors (De’ath & Fabricius, 2000). In other
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words, the model can be thought of as a tree-shaped series of rules which at each
branching point (node) uses a conditional statement (e.g., annual rainfall < 15 cm) to
divide the response into two classes, each of which is relatively homogeneous. Deci-
sion trees partition the predictor space using a series of rules to identify areas having
the most homogeneous responses. At each node, the responses then take as their val-
ues either the majority class (for CT) or the average value (for RT) of the training
data. Decision trees are particularly effective at modeling complex (nonlinear and
nonadditive) relationships between predictors and responses, including categorical
predictors, which are difficult to parameterize using linear models when they have
many categories. Decision trees are also very robust at handling missing values and
outliers (De’ath & Fabricius, 2000). They do have some drawbacks, however, includ-
ing poor categorization of linear or smooth species responses, poor categorization of
rare classes, especially with limited observations, and potential instability to chang-
ing inputs (Franklin, 2009). Ensemble techniques that combine decision trees with
algorithms for boosting, such as boosted regression trees (Elith et al., 2008), and
bagging, such as random forests (Cutler et al., 2007), have been shown to improve
performance by compensating for some of these deficiencies.

Genetic algorithms have been extensively used for niche modeling through the
use of the genetic algorithm for rule-set production (GARP) software (Stockwell &
Peters, 1999). Like decision trees, genetic algorithm models are expressed in terms of
conditional decision rules. Unlike decision trees, however, the rules are generated as
part of a population of rules that are “evolved” iteratively through modifications (i.e.,
“mutation”) and evaluation based on ability to predict known cases (i.e., “natural
selection”). Through successive iterations, an optimal set of rules emerge. In GARP,
the population of rules includes several different kinds of models (e.g., envelope,
logistic regression) from which the algorithm chooses the optimal set (Stockwell &
Peters, 1999). GARP and other genetic algorithms are stochastic algorithms that
produce different results when applied to the same data. A more robust model can
be produced by running the algorithm multiple times and summarizing across runs
(Anderson et al., 2003).

Maximum entropy is a machine learning model that has been widely applied to
ENM research through the Maxent algorithm and software (Phillips et al., 2006;
Phillips & Dudk, 2008). It is based on the principle that, given limited information
about a set of features, the probability distribution that best models that information
is the distribution of maximum entropy (i.e., that is most spread out, or closest to
uniform), subject to the constraint that the expected value of each feature match
its empirical mean. Applied to ENMs, environmental variables are the features
comprising the space upon which the probability distribution is defined and the
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values found at presence locations supply the constraints. The maximum entropy
distribution is effective at modeling incomplete information because it agrees with
everything that is known without assuming anything that is not known (Phillips et
al., 2006).

Point process models (PPM) have recently emerged as highly promising tools for
presence-only modeling (Renner et al., 2015). By demonstrating close connections
with both Maxent and traditional GLM (Renner & Warton, 2013), PPM can claim
the performance benefits of Maxent while clarifying important points of statistical
interpretation and implementation. Because the target of interest in point process
models is intensity, however, point process models may be most appropriate for
modeling abundance based on suitably sampled presence data.

Aside from algorithms such as those described in this chapter, a number of meth-
ods are available for improving model accuracy, minimizing overfitting, and evalu-
ating model performance. These methods are in general not restricted to particular
models, and we cover some of them in the following section on “Implementing ecolog-
ical niche models.” We mention them here, however, because modeling approaches
and (particularly) software vary in the availability and implementation of these addi-
tional methods and this can be an important consideration when choosing an ENM
method.

Finally, another factor to consider is how well methods perform in comparison
to one another. A number of studies have systematically compared ENM methods
(e.g., Loiselle et al., 2003; Segurado & Arajo, 2004; Elith et al., 2006; Pearson et al.,
2006; Wisz et al., 2008; Elith & Graham, 2009) and have consistently demonstrated
differences in performance among methods. These studies differ in their focus on
different applications, for instance projections into future climate scenarios (Arajo
et al., 2005; Pearson et al., 2006), projections into unsampled areas (Peterson et
al., 2007), modeling of presence-only data (Elith et al., 2006; Tsoar et al., 2007), or
modeling with small sample sizes (Pearson et al., 2007).

Elith et al. (2006) conducted one of the most comprehensive comparative ENM
studies to date in terms of the number of models compared (16), global coverage (6
regions across the globe), and number of species (226). For each species, they trained
models based on presence-only occurrence records (such as those typical from un-
planned surveys or museum collections) and evaluated models based on presence
and absence records collected from planned surveys of the same regions. They found
that machine learning models such as Maxent and boosted regression trees performed
relatively well due to their ability to predict species distributions. A number of pub-
lications, however, caution against simplistic interpretations of these comparisons
(e.g., Peterson et al., 2011), as different evaluation strategies emphasize different
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goals and consequently make different assumptions. Elith and colleagues, for in-
stance, evaluated models based on their predictions of species occupied areas rather
than all abiotically suitable areas, the latter of which is more expansive since abioti-
cally suitable areas may nevertheless be unsuitable due to biotic factors. Evaluation
based on species occupied areas assumes that species are in equilibrium with their
environment and is therefore problematic for applications such as projections into
future climate scenarios (Arajo & New, 2007), modeling niche evolution (Warren et
al., 2008), or predicting range shifts in non-native species (Peterson, 2003).

Box 1: Case Study: Testing for niche divergence among subspecies of
the Central American squirrel monkey

Squirrel monkeys (genus Saimiri) occur throughout the Amazon, and also in
a disjunct, highly restricted area along the Pacific coast of Central America. A
recent biogeographical analysis of the genus suggests that the Central American
species, S. oerstedii, is a northern ancestral remnant of a population expansion
event from the S. ustus A group approximately 1.35 and 1 Ma (Lynch Alfaro
et al., 2015). The two subspecies of S. oerstedii (S. oerstedii oerstedii and S.
oerstedii citrinellus) are distinguished by pelage differences (Hershkovitz, 1984;
Rylands & Mittermeier, 2009) and have disjunct geographic distributions on
either side of the large Trraba River. Recent genetic studies have lended support
for the reciprocal monophyly of these subspecies (Blair et al., 2013a; Lynch
Alfaro et al., 2015). The split between the subspecies has been dated to between
0.25 to 0.15 Ma (Lynch Alfaro et al., 2015) or 0.16 to 0.11 Ma (Chiou et al.,
2011), consistent with the hypothesis that the subspecies separated during a
sea-level rise of ca. 100 m in the Middle-Upper Pleistocene (Nores, 1999; Ford,
2006). S. oerstedii are restricted to lowland settings (below 500 m asl) and are
therefore constrained to the Central and Southern Pacific coasts by the Central
and Talamanca Cordilleras. High water levels in the Pleistocene would thus have
resulted in their isolation (Ford, 2006), which is now maintained by the Trraba
River.

In this case study, we use ENMs to test hypotheses about ecological niche
divergence between the two subspecies of S. oerstedii. The timing of genetic
divergence coincides with a potential isolation event due to sea-level rise in the
Middle-Upper Pleistocene, suggesting an allopatric divergence process for these
populations. An allopatric process is essentially a spatial process, which may be
facilitated by ecological niche conservatism, where failure to adapt to new envi-
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ronments maintains separation between populations (Wiens, 2004). Allopatric
divergence process would be most supported by a finding of niche conservatism,
or a failure to reject a null model (Losos, 2008; Blair et al., 2013b). By contrast,
a finding of niche divergence might suggest a process of ecological divergence, if
distributed along an ecotone, or post-divergence ecological specialization.

We sourced occurrence data for S. o. citrinellus from prior fieldwork (Blair
& Melnick, 2012a, 2012b) and for S. o. oerstedii from published (Rodrguez-
Vargas, 2003; Solano Rojas, 2007) and unpublished sources (A. Mora & G.
Gutirrez-Espeleta, unpubl. data). Presence points were assessed visually for
obvious errors. We used 19 bioclimatic variables in the WorldClim dataset (Hi-
jmans et al., 2005) to characterize the environmental background of our study
region. We set a window encompassing the study area, then ran a principal com-
ponents analysis (Peterson et al., 2007) to create a final environmental dataset of
8 independent variables encompassing most (>99%) of the bioclimatic variation.
To minimize spatial autocorrelation, we filtered presence records by sampling
for environmentally equidistant points (i.e., points that were most distant from
other records in environmental space) (Oliveira et al., 2014). The final dataset
comprised 23 presence records for S. o. citrinellus and 206 presence records
for S. o. oerstedii. For methods requiring absence information, we generated
pseudoabsences randomly from the background for each species with a ratio of
9 pseudoabsences per presence.

Modeling was complicated by differences in spatial bias in the occurrence
datasets. Points for S. o. citrinellus were few, but reasonably well-distributed
and representative of the restricted range of the subspecies. Points for S. o.
oerstedii were more numerous, but exhibited much more uneven coverage, even
following filtering.

For both species, we ran five algorithms to model the ecological niche (Table
2), calculating predictions across the study region for each model. To evaluate
the predictions, we cross-validated the models via 5-fold partitioning using two
measures of model performance: area under the receiver operating characteristic
curve (AUC) and the maximum (i.e., threshold-independent) true skill statistic
(Allouche et al., 2006).

As expected, model performance measures were generally higher for S. o.
citrinellus (Table 2), reflecting the more even sampling design. Because of the
biases in our occurrence dataset, we created a more robust model for each species
by combining all five models into an ensemble forecast of subspecies distributions,
using the minimum training presence as a classification threshold (Figure 3).
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Table 2: Model evaluation results for two subspecies using five algorithms.

Subspecies Method AUC TSS (maximum)

S. o. citrinellus MD 0.9861668 0.9251109
S. o. citrinellus ANN 0.9779671 0.8973745
S. o. citrinellus SVM 0.9781707 0.9562147
S. o. citrinellus BRT 0.9817845 0.8986909
S. o. citrinellus MAXENT 0.9863144 0.9213667
S. o. oerstedii MD 0.9777778 0.9625000
S. o. oerstedii ANN 0.9983673 0.9959184
S. o. oerstedii SVM 0.9942857 0.9755102
S. o. oerstedii BRT 0.9979167 0.9875000
S. o. oerstedii MAXENT 0.9975510 0.9877551

S. o. citrinellus

S. o. oerstedii

S. o. oerstedii and S. o. citrinellus

S. o. citrinellus

S. o. oerstedii

S. o. oerstedii and i S. o. citrinellus

Occurrence records

Figure 3: Projected distributions for Saimiri oerstedii oerstedii and Saimiri citrinellus
citrinellus using an ensemble approach.

To test for niche overlap, we calculated similarity statistics (Warren et al.,
2008) and conducted background randomization tests (Warren et al., 2010) to
assess whether inferred niches were more or less different than expected by chance
based on differences in the environmental backgrounds in which they occur.
Background areas for each subspecies were defined based on areas falling within
10 km of a known occurrence. Randomization tests in both directions using 100
replicates with Maxent models revealed significant niche divergence for the D
similarity statistic (p < 0.01, p < 0.01), but not the I similarity statistic (p =
0.33, p = 0.33).

19

Author's version of published manuscript. Publisher's version available via https://doi.org/10.1017/9781107449824.018. Please cite as:

Chiou, K.L., Blair, M.E. 2021. Modeling niches and mapping distributions: progress and promise of ecological niche models for primate 
research. In F.L. Dolins, C.A. Shaffer, L.M. Porter, J.R. Hickey, N.P. Nibbelink (Eds.), Spatial Analysis in Field Primatology: Applying GIS at 
Varying Scales  (pp. 315–348). Cambridge, UK: Cambridge University Press.



Based on these results, we find support for significant niche divergence un-
der one statistic, but cannot reject the null hypothesis under the other statistic.
Given a lack of a clear ecological gradient between the distributions of two sub-
species, our results are most consistent with an allopatric divergence scenario. A
cautious interpretation is needed, however, given known biases in the sampling of
each subspecies. Ultimately, these models illustrate the limitations of inferences
based on incomplete or biased sampling. A reasonable conclusion, therefore, is
that even the best models may fail when there are unaddressed shortcomings in
the data.

4 Ecological Niche Models in Practice

Whereas the previous section focused on the diversity of ENM approaches, in this
section we describe the practice of designing and running ENMs. Our review below
is largely model-independent but in some cases we concentrate our discussion on
Maxent because of its popularity, high-performance, and suitability for presence-
only data.

Before beginning the modeling process, the model objectives should be clearly
expressed. What is being modeled? Is the focus on modeling niches or distributions?
Is the focus on the fundamental niche or the realized niche? The fundamental niche
(or potential niche) refers to the set of all environmental states that permit a species
to survive while the realized niche refers to the set of all environmental states that
permit a species to survive in the presence of competitors or other biotic or move-
ment factors. Whereas the fundamental niche represents the range of theoretical
possibilities, the realized niche represents the range that is observable in nature due
to real-world circumstances, which may be spatially or temporally specific. While
the realized niche is often understood as a subset of the fundamental niche, this is not
necessarily the case, for instance in sink habitats (low quality patches where species
occupancy is maintained by an influx of individuals from high quality patches) or in
cases where there is facilitation among species (see Levi et al., 2013 for a primate
example). In general, the fundamental niche is more relevant for assessing poten-
tial distributions whereas the realized niche is more relevant for assessing occupied
distributions. We recommend that readers consult Sobern & Peterson (2005) and
Peterson et al. (2011) for a more thorough discussion.
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4.1 Sample data

Sample data provide information relevant for characterizing areas of environmental
space as being part of, or not part of, the ecological niche. They virtually always take
the form of geographic presence/absence/abundance locations that provide training
information for the models through their spatially associated environmental values,
which we discuss in the following section.

Absence and abundance data generally take the form of areas, usually grid cells,
rather than points. Unlike presence data, absence and abundance areas require
considerable survey effort in order to minimize false negatives, i.e., calling species
absent when they are in fact present. Rigorous survey data are also beneficial for
presence-only data—for instance by minimizing spatial bias or by increasing coverage
of areas where species are rare but present—but are frequently not available.

Presence data are often provided as georeferenced points in space, but not always.
Presence data can also exist as areas, such as in the case of home range data or
distributional data with well-defined boundaries (e.g., islands or national parks). If
presence areas are smaller than the resolution of the environmental data, they can be
treated as points. If they are larger, however, the environmental values of pixels from
across each presence area may be required in order to characterize the occurrence in
terms of their mean, range, variance, etc. (Franklin, 2009). Presence data can also
be expressed as implicit, but non-georeferenced, points of varying precision (e.g.,
“in Kaohsiung, Taiwan” or “1.2 km southwest of Fibwe Hide, Kasanka National
Park”). These occurrences can be interpreted as areas conservatively encompassing
the occurrence point. If these areas are small, like presence areas they can be treated
as point data. If they are large, however, additional judgments must be made. In
many cases, the data may be deemed unusable.

There are many sources for occurrence data but the most reliable are from field
studies. Georeferenced occurrences are often obtained from the literature or from
colleagues working in the field. Natural history collections are another major source
of data on species distributions and are particularly invaluable as a source of informa-
tion on historical distributions. These records vary in their accuracy, both geographic
and taxonomic. These issues, however, are sometimes documented through meta-
data and in many cases the primary source material (i.e., “vouchered” specimen“)
has been retained and can be reexamined. Occurrence data may also be obtained
from secondary sources such as scanned distribution maps, although this is seldom
advisable due to numerous issues including mapmaking precision and georeferencing
errors.

The Internet is a major source of occurrence data, both through scientific and
community sources. The Global Biodiversity Information Facility (GBIF) is the
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most prominent repository and includes occurrence data from many natural history
collections. Other sources are newer and less established, but have the potential
to be of great utility for primate ENM studies. GPS collars are being increas-
ingly deployed and their data are beginning to be deposited in repositories such as
Movebank (http://movebank.org). These data are especially promising for high-
resolution local studies. Camera trap surveys are a promising source of occurrence
data for rare or elusive species, as are newer methods such as metagenomic DNA
surveys (e.g., Calvignac-Spencer et al., 2013). Repositories for these kinds of data
do not yet exist to our knowledge, but could become invaluable. Aside from sci-
entific sources, occurrence data are also available through photo-sharing websites
such as Flickr (http://flickr.com) or citizen science efforts such as Project Noah
(http://projectnoah.org). We caution, however, that many of the photos on these
websites are of captive animals, are not georeferenced, or are georeferenced using im-
precise methods that are not necessarily indicated in the metadata (e.g., smartphone
location services with wide errors or visual geotagging applied post hoc). These
websites also contain numerous errors in taxonomic assignment, although these can
sometimes be corrected based on the photos themselves. These issues are important
and may ultimately turn researchers away from incorporating these data into their
projects. We note, however, that the same issues are prevalent in scientific reposi-
tories such as GBIF (Yesson et al., 2007; Newbold, 2010) and we remain altogether
enthusiastic about the promise of citizen science approaches to ENM research (see
also Hochachka et al., 2012).

Creating a good occurrence dataset ultimately requires a balance between the
desire for an adequate sample size, the avoidance of positional or taxonomic errors,
and the minimization of sample bias. While large samples may seem desirable, some
studies (e.g., Pearson et al., 2007) have shown that acceptable models can be built
from small samples, especially using certain methods (Stockwell & Peterson, 2002;
Elith et al., 2006; Wisz et al., 2008). A recent study (Beck et al., 2013) compared
GBIF data to independent compilation efforts for European hawkmoths and found
that GBIF contributed less information for niche modeling despite containing many
more distribution records. It is therefore better to have small well-distributed samples
with low bias/error than to have large samples for which bias/error is prevalent. At
least fifty presence observations per species (Kadmon et al., 2003) seems to work well
as a rule of thumb, with lower targets for restricted, rare, or elusive species (Pearson
et al., 2007). For presence-absence methods, previous studies have suggested tar-
geting a ratio of one absence point for every presence point (e.g., McPherson et al.,
2004). This suggested ratio, however, depends on species prevalence and should be
higher for rare species (Franklin, 2009). This ratio also does not apply to presence-

22

Author's version of published manuscript. Publisher's version available via https://doi.org/10.1017/9781107449824.018. Please cite as:

Chiou, K.L., Blair, M.E. 2021. Modeling niches and mapping distributions: progress and promise of ecological niche models for primate 
research. In F.L. Dolins, C.A. Shaffer, L.M. Porter, J.R. Hickey, N.P. Nibbelink (Eds.), Spatial Analysis in Field Primatology: Applying GIS at 
Varying Scales  (pp. 315–348). Cambridge, UK: Cambridge University Press.

http://movebank.org
http://flickr.com
http://projectnoah.org


Pan troglodytes verus

Pan troglodytes ellioti

Pan troglodytes troglodytes

Pan troglodytes schweinfurthii

Figure 4: Spatial bias and positional errors in sample locales are evident in occurrence data
for common chimpanzees (Pan troglodytes spp.) downloaded from the Global Biodiversity
Information Facility (http://gbif.org; accessed December 15, 2013). In total, 116 records
had spatial coordinates. These sample points (yellow circles) are shown superimposed over
a chimpanzee distribution map adapted from Bjork et al. (2011). Not shown are six points
located on other continents. Notice that some points occur in the middle of the Atlantic
Ocean, indicating that errors are present in the dataset (there are no marine chimpanzees).
Not all errors, unfortunately, can be so easily identified.

background methods involving randomly generated pseudoabsences, as selection of
these pseudoabsences follows other considerations (VanDerWal et al., 2009).

It is less important for the sample size to be large than for it to be representative of
the niche distribution. In reality, most ENM datasets are biased in both geographic
and environmental space (Figure 3). In a recent literature review, for instance,
Yackulic et al. (2013) found that 87% of datasets used in Maxent studies were
subject to sample selection bias and that few studies attempted to correct for it.
Spatial bias can result from many factors, such as from concentrating survey effort
around areas of convenience such as roads or campsites or from skewed representation
of areas and taxa that have historically received greater attention. A few methods
exist for reducing these biases or for taking them into account. When measures of
sampling effort are available, this information can be incorporated into models. In
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Maxent, this is accomplished using a “bias file” that specifies the relative sampling
effort across cells. When information on sampling effort is not available, the density
of occurrence records can be used as a proxy for relative sampling effort (Kramer-
Schadt et al., 2013). For datasets with uneven sample density, spatial bias can also be
reduced through spatial filtering, i.e., by randomly filtering records from areas with
high record density (e.g., Boria et al., 2014; Oliveira et al., 2014). Kramer-Schadt
et al. (2013) compared the bias file and spatial filtering approaches and found that
both improved model predictions and were therefore preferable to not correcting for
biases at all. Of the two methods, they found spatial filtering to be more effective.

4.2 Environmental data

Environmental data are comprised of the features that might influence occupancy
across time and space. Stated another way, environmental data constitute the math-
ematical space upon which ENMs are defined. In the model training stage, they
provide the values at sample locations that are used to develop the model, as well
as for the background sample locations required for some approaches. In the model
prediction stage, they provide the values used to calculate suitability scores across
the test region. The environmental data for the training region and test region are
often equivalent, but they can differ, such as when models are projected into different
regions or time periods.

Environmental variables are ultimately important for ENMs because of the ex-
pectation that they are related to aspects of niches and distributions. One goal of
variable selection is therefore to identify which variables best provide this informa-
tion. This is affected to a great extent by the spatial scale of the study. Climatic
variables, for instance, are widely acknowledged to be important determinants of
thermal, moisture, and light regimes that influence range limits at coarse scales,
while factors such as land cover, habitat structure, vegetation phenology, and com-
petitor or predator density are likely to be more relevant at medium and fine scales.

The decision regarding which variables to include in analysis should consider
whether the model focuses on the potential or realized niche/distribution. If the
focus is on the potential distribution, variables that remain relatively static over
large scales and timeframes may be more relevant. Conversely, if the focus is on
the occupied distribution, variables that are more dynamic and local may become
important.

In the past, one of the biggest barriers for ENM research was the scarcity of
suitable environmental datasets. Now digital environmental datasets are quite com-
mon and their availability has helped spur the explosion of interest in ENMs in
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recent years. The most influential datasets have succeeded due to their high, often
global coverage, the standardization of methodology across broad areas, and their
ability to provide meaningful information for niche models. This includes the World-
clim dataset (Hijmans et al., 2005), which provides high resolution (30 arcseconds, or
about 1 km) temperature and precipitation surfaces for land areas covering the entire
Earth. These surfaces have been used to derive a set of nineteen bioclimatic variables
known as Bioclim variables because they were first developed for early bioclimatic
envelope modeling studies using the BIOCLIM method and software (Booth et al.,
2014). These nineteen variables are intended to represent annual trends, seasonality,
and extremes in temperature and precipitation conditions.

While the availability of these datasets is exciting, it is important that users be
mindful of possible quality issues and of the pitfalls of using the data incorrectly
(Barry & Elith, 2006). Values from the Worldclim dataset, for example, were in-
terpolated from data collected by weather stations across the world. These weather
stations are not distributed evenly across space and in many cases the tropical re-
gions inhabited by most primates have the poorest coverage (Figure 4). Areas with
low coverage are not only prone to missing potentially important information on
aspects of microclimate, but they are also disproportionately impacted by errors in
weather station data. It is therefore advisable to dedicate at least some effort to-
wards understanding how much trust to place in these data for applications. In some
cases, data products from downscaled regional climate models might be available or
more appropriate for a given area of interest, particularly for areas with considerable
topographic complexity.

Aside from climatic variables, variables derived from satellite or aerial imagery
are widely used for ENM research. This includes digital elevation models, land cover
classifications, and vegetation indices. Vegetation is likely to be of particular im-
portance for primate distributions as both a source of food and as a critical habitat
component. Vegetation and other habitat variables can be classified from multispec-
tral or hyperspectral imagery or from data collected in the field (Rode et al., 2013).
For these data, however, it can be challenging to describe a meaningful relationship
between vegetation classifications and habitat suitability, especially at greater geo-
graphic scales (e.g., Chapman et al., 2002). Distributions of other species are also
sometimes used as predictors (e.g., Heikkinen et al., 2007). While they suffer from
similar scale issues, such predictors may nevertheless provide meaningful informa-
tion on biotic interactions such as with food resources, competitors, predators, or
facilitators.

After determining what variables are available for niche modeling, it is important
to ask how many and which variables to include. In some cases, it may be necessary
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Figure 5: An example of low or uneven spatial coverage of weather stations contributing
data to interpolated climate datasets. Here, annual mean temperature (BIO1) from the
Worldclim dataset (Hijmans et al., 2005) is visualized in Kenya at 30 arcsecond (˜1km)
resolution along with the locations of weather stations (white circles) contributing raw data
to the interpolation. Temperatures are displayed on a red-blue (hot-cold) color scale, with
a 2.5 standard deviation stretch function applied in order to increase contrast.
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to eliminate variables that do not correspond temporally with other variables or with
the sample data. Variables may also prove to be unusable due to spatial issues, such
as with incompatible projections, resolutions, or extents, although methods exist for
resolving these issues.

Many of the primate ENM studies reviewed in this chapter ran their models using
all nineteen Bioclim variables in the Worldclim dataset. This “all but the kitchen
sink” approach is understandable given that information on key factors limiting pri-
mate species is rarely known. It leads, however, to high degrees of collinearity among
variables, which can have adverse effects on statistically based methods (Dormann et
al., 2013). Furthermore, inclusion of many variables tends to result in overfit models
or a loss of degrees of freedom (Peterson & Nakazawa, 2008). It is generally advis-
able to select among variables when they correlate. The decision regarding which
variables to include, however, can have important impacts on the model. Braunisch
et al. (2013) demonstrated this to be the case particularly for projections into future
climate change scenarios, where correlative relationships among climate parameters
do not necessarily persist. They found that, even when collinearity among variables
was maintained across time periods, selecting different variables resulted in different
predictions.

When information is available regarding life history and physiological tolerances,
the best approach is to use that information to choose an appropriate set of vari-
ables (e.g., Blair et al., 2013b). In the absence of a priori information, there are
some existing methods that have been used to reduce dimensionality in ENMs and
to explore relationships among variables (reviewed in Dormann et al., 2013). One
approach is to use correlation analysis to identify a set of least-correlated variables,
although this approach does not necessarily correct for collinearity (Dormann et al.,
2013). Another approach is to use principal components analysis or similar ordina-
tion techniques to transform the variables onto new orthogonal axes, then to use the
most important dimensions as modeling inputs (e.g., Peterson et al., 2007).

While reducing the number of variables is generally desirable, this can also have
adverse effects. Using too few variables can cause the model to miss important factors
and to estimate overly broad distributional areas. For some methods, particularly
machine-learning methods, collinearity may not be as important of an issue (Guisan
& Thuiller, 2005; Elith et al., 2011). One effective strategy might be to run the ENM
using many variables with collinear relationships, then to let the model determine
which variables contribute the most information relevant to the model. Maxent, for
instance, iteratively changes coefficients of environmental features and assigns the
increases in the model gain (fit) to the variables the features depend on. These
cumulative gains are then used to assess percentage contribution to the models.
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Additionally, the jackknife test in Maxent measures variable contributions to the
models when they are the only variable included in the model and when they are the
only variable excluded from the model. This helps shed light on how much relevant
information each variable provides as well as how much relevant information each
variable uniquely provides (i.e., that is not provided by other variables).

Because Maxent and other presence-background (or presence-pseudoabsence) ap-
proaches train their models by incorporating a sample of cells taken from the study
region, they potentially require additional consideration regarding the extent of the
training region used. Anderson & Raza (2010) demonstrated that study regions that
were too wide resulted in predictions that were overfit to conditions found near oc-
cupied localities. This occurs because wide regions are more likely to include areas
that are suitable for species, but that are not occupied due to movement limitations
or biotic interactions. In Maxent, “clamping” (i.e., treating variables outside the
training range as if they were at the limit of the training range) can be used to help
overcome this problem.

Spatial autocorrelation is another important potential issue affecting environ-
mental datasets (Keitt et al., 2002). Spatial autocorrelation results from sample
points in space having values that are more similar than expected by chance. When
it is positive, points that are nearer exhibit more similar values than those that
are far apart. The use of autocorrelated variables may place undue emphasis on
environmental factors that may not be important influences on niches and distribu-
tions. Several methods have been proposed to correct for this problem (reviewed
in Dormann et al., 2007). One method that has been widely adopted corrects for
spatial correlation by calculating a measure of autocorrelation, the autocovariate, as
a new term and including it as an additional variable in the environmental dataset
(Dormann et al., 2007). The procedure of correcting for spatial autocorrelation may
be more important for regression approaches than for machine-learning methods.
Vclavk et al. (2011) found that while accounting for spatial autocorrelation using
multiple methods and geographic scales improved the performance of both a Maxent
and GLM model, it reduced spatial autocorrelation in the residuals of only the GLM
model.

4.3 Evaluating model performance

Once the model inputs have been determined and the model has been run, several
measures exist for assessing performance and significance. Performance is generally
assessed based on the ability of the model to predict occurrences in geographical or,
less commonly, environmental space. High-performing models should be expected
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to minimize commission (false positive) and omission (false negative) errors. Of
these two error categories, omission errors are more worrisome because they indicate
either model failure or erroneous training data, with a few exceptions (e.g., sink
populations). Commission errors are more difficult to interpret due to uncertainty
whether negative data reflect true absences or an absence of knowledge.

Evaluation datasets can take the form of fully independent occurrence data, but
we anticipate that these will rarely be available for primate research. A more prac-
tical approach to evaluation and one of the most widely used is known as k -fold
cross-validation, or cross-partitioning. In this evaluation scheme, the occurrences
are divided into k random subsets of even size. In successive stages, new models are
run using each subset as evaluation data and the remaining subsets as training data.
In this manner, a distribution of k estimates of commission/omission error can be
estimated.

Estimating commission/omission requires the use of a discrimination threshold
(cutoff value) to determine which cells should be judged as suitable or unsuitable
habitats for species. Thresholds are also necessary for the mapping of predicted
distributions into geographic space. A number of thresholds have been proposed and
employed in ENM research (Liu et al., 2005). One intuitive threshold that is well-
suited for presence-only data is the “minimum training presence” (MTP). The MTP
sets as a threshold the lowest prediction value corresponding with a known presence.
A predicted distribution based on the MTP as a threshold can be interpreted as
encompassing the areas that are at least as suitable as the least suitable location the
species is known to inhabit. It is therefore a conservative measure that identifies the
minimum possible area while maintaining zero omission error (Pearson et al., 2007).
The MTP, however, can perform poorly if questionable presence observations exist
in the dataset or if presence observations are not otherwise representative of suitable
habitats. Still more conservative thresholds such as the 10% minimum training
presence and the equal training sensitivity and specificity are useful in these cases.

One goal of evaluation, however, might be to assess model performance indepen-
dent of thresholds. The receiver operating characteristic (ROC) curve is commonly
used for this purpose. ROC plots the lack of omission error (true positive rate)
on the y-axis against the commission error (false positive rate) on the x-axis. In
contrast to threshold-based evaluation measures, ROC calculates numerous omission
and commission errors across a range of prediction strengths. The area under the
curve (AUC) of the ROC plot represents an overall measure of the performance of
the model across a range of thresholds. Its characteristics make it a popular choice
as a performance metric (Peterson et al., 2011). Care should be taken to use ap-
propriate settings (e.g., Muscarella et al., 2014), however, as AUC can be inflated in
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presence-only models.
Evaluation methods and metrics make possible critical assessments of factors

influencing model performance and strategies for improving performance. These
include topics already discussed such as choosing effective sample sizes, minimizing
sample selection bias, correcting for collinearity among environmental variables, and
correcting for spatial autocorrelation. Performance can also sometimes be improved
by modifying model parameters usually treated as defaults. In Maxent, for example,
default parameters were set using average values judged to be optimal using extensive
empirical “tuning” (Phillips & Dudk, 2008). Species-specific tuning of parameters
shows promise as another method for increasing performance in Maxent, particularly
for applications where generality and transferability are desirable (Radosavljevic &
Anderson, 2014).

5 Conclusion

A great deal of questions of interest to primatologists can be explored using ENMs,
from incorporating climate change into conservation plans to predicting the geogra-
phies of hybridization and mixed species associations. Paired with coalescent models
or genetic data including next-generation genetic sequencing, ENMs can be used for
even more robust inferences about biogeography and population histories. ENMs
hold great promise for primatologists, and we hope this chapter will encourage ex-
panded use of the approach amongst our colleagues.
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